
LA-UR-20-27295
Approved for public release; distribution is unlimited.

Title: Introduction to FLAG

Author(s): Whitley, Von Howard
DeBurgomaster, Carrie Ann

Intended for: Training and reference material.

Issued: 2020-09-17



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  1 

 

Introduction to FLAG 

By Von H.Whitley, XTD-SS 

Edited by Carrie A. DeBurgomaster, XTD-SS 

 

The following guide is a tutorial-style introduction to FLAG for anyone who wants to get started with or 
learn more about FLAG. More information is available in the full FLAG manual. 

Chapters 1-5 cover the basics of running FLAG. Chapter 5 is quite long, but covers a number of 
fundamental FLAG concepts, and is recommended reading. Chapters 6-8 lead the reader through simple 
HE cylinder and practical sample problems based on the Cagliostro experiments. After that, if you want to 
continue your FLAG education, Nick Denissen’s Tutorial is a logical next step or you can read the FLAG 
manual (RTFM) found on the Lagrangian Applications Project (LAP) documentation page.  

Confluence 
The videos and files in this guide are linked to https://xcp-confluence.lanl.gov/. Employees who don’t 
have access can contact their local group office to gain access.  

High Performance Computing 
You will need to log into a High Performance Computing (HPC) resource to run FLAG files. 

Units 
FLAG supports different units of measurement and the default is the centimeter-gram-microsecond 
(cgmu) system (pressure et al. follow): 
Pressure: MBar 
Density: g/cc 
Velocity: cm/us 
Temperature: K 
HE Energy: MBar-cc/g 
microseconds (us) 
gram (g) 

XRAGE and users of other code users will become familiar with unit conversion. 

Meshing 
FLAG has many meshing options available - it can be run in Lagrangian mode, Eulerian mode, or some 
hybrid of the two. Since the Lagrangian meshes move, various mesh controllers are required to prevent 
mesh tangling. Depending on what you're running, mesh options can be fairly simple, or they can make 
up nearly half the input file. This will be discussed more later.   

https://xweb.lanl.gov/shavano/releases/flag/latest/OPUS/FLAG/flagman/CodeManual.html
https://xcp-confluence.lanl.gov/display/LAPP/FLAG+Tutorials
https://xcp-confluence.lanl.gov/display/LAPP/Documentation
https://xcp-confluence.lanl.gov/
https://hpc.lanl.gov/summary_table


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  2 

1. Setting up the Environment and Running FLAG 

This section will cover setting up the environment to run an input file, and running a simple input to test 
that everything is working. There are two ways to run: interactively or batch script submission. 

Running Interactively 

Log into an appropriate yellow machine and ensure your FLAG file is on the machine. If you need to 
upload your FLAG file to the supercomputer: 

● if you don’t already have a specific location to run the model, create one on the supercomputer: 
cd /lustre/scratch3/yellow/username 
Note: there are other scratch locations besides scratch3. Files stored on the scratch space are 
cleared out regularly, so keep the ‘master’ file on your machine. 

● in your scratch directory: mkdir newdirname 
● cd newdirname to check that the directory was created 
● change directories back to the area where your FLAG file is stored and secure copy the file:  

scp 2S-118.flg username@sn-fey:/lustre/scratch3/yellow/username/newdirname 
Note: the command above is for the Snow computer (sn=Snow). 

Obtain an interactive allocation. Here is the command and output text requesting 1 node for 10 minutes: 

 

salloc is the command used to request the allocation. 
-N is number of nodes 
-t is time in minutes 

When the allocation is granted and the prompt is returned, set up the location of FLAG executables. At 
the time of this writing, the most current version of FLAG was 3.8.Alpha.19. Running the most recent 
version is recommended. 

 

Now that the environment is set up, you can run an input file. To test this, download 2S-118.flg file from 
Confluence and execute the following: 

 

https://hpc.lanl.gov/summary_table
https://xcp-confluence.lanl.gov/download/attachments/429097146/2S-118.flg?version=1&modificationDate=1587076934986&api=v2
https://xcp-confluence.lanl.gov/download/attachments/429097146/2S-118.flg?version=1&modificationDate=1587076934986&api=v2
https://xcp-confluence.lanl.gov/display/WCEM/PART+1%3A++Setting+up+the+environment+and+running+FLAG


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  3 

Check that everything is set up and FLAG is running correctly. Input specifics aren’t important yet. If the 
input is running correctly, you will start to see text scroll across the screen.   

● The bulk will read Ensight dump followed by Cycle 
This means the input is running, it's dumping visualization files and cycling.   

● At the end, there will be a comment: Total Run time =   
● The information that scrolled across the screen while running can be found in the 'flg.tty' file. 

Running as a Batch Script 

If you would like to submit as a batch script, instead of running interactively, you will need to complete 
the steps in this section. 

Edit your ~/.cshrc file using the editor of your choice. Then, add the following lines to add the location of 
the FLAG executable to the path: 

 

Save the file, then source in the .cshrc file (source .cshrc) or open a new window to get the updated path.  
If you did it correctly, you can type 'flag<tab>' at the prompt and see all the versions of FLAG that can be 
run. In this guide, we will run 3.8.Alpha.19. 

 

In this case, we have requested:   
-i is the input file name. 
-n is the number of processors. 
-w is time in minutes. 

When the input starts to run, you should have a .tty file in the directory that contains all the run 
information. In the case of my run, the .tty file was called:  2S-118.flg.20200416_16_55_09.tty 

Input File 

Test environment setup: 2S-118.flg  

https://xcp-confluence.lanl.gov/download/attachments/429097146/2S-118.flg?version=1&modificationDate=1587076934986&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  4 

2. Active Code Blocks, Comments, Variables, Math 

Comments and Active Code Blocks 

The comment sections are denoted by '$' or '!'. Both are interchangeable. So, in FLAG, that '$' means 
comment instead of active block. Additionally, in FLAG all blocks of code that do not begin with a '$' or 
a '!' are active. You can also have a line that is partially active and partially a comment, such as: 

/global/mesh/model/gas/eos $This is a comment embedded in an active line of code 

Variables 

FLAG can have variable declarations, which are most often used for setup dimensions or for defining a 
constant. For example, the 2S-118.flg file had the following variable definitions: 

 

Those variables were used to quickly change the stop time, flyer velocity, or geometry.   
TSTOP If you check the input, the stop time command (tstop) is set to the variable TSTOP.  

Variable declarations are useful to many users. Understanding variable declarations makes .flg input files 
easier to work with. 

Math 

FLAG has the ability to do simple math in the input file. The input is a bit odd and goes by several names, 
including 'Polish Notation' and 'Prefix Notation'. If you're familiar with 'Reverse Polish Notation', it's the 
same thing, except the opposite -- Reverse Reverse Polish Notation! If you want to do something like 1 + 
1  in this math, the FLAG input would be +(1 1). You will see this in input decks. Often, it will be a unit 
conversion or calculating a constant. Two examples are: 

● RADIUS = *(5.0 2.54) $Convert a 5" radius to cm as in 5 * 2.54 
● GAMMA = /( 5  3 ) $Adiabatic gas gamma calculated as 5/3 

You do not have to do math in the input deck, you can put in the constant value instead. However, 
sometimes it's useful for keeping original dimensions in inches (to make it easier to check input geometry 
and then calculate the correct dimensions in cm). You'll  encounter such math operations in the sample 
input files provided in this tutorial.  



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  5 

3. Relational Database Input Structure; the “+” Shortcut 

FLAG uses a relational database for the input format.  A FLAG input deck will contain input such as: 

mk /global/mesh/mat 

Each one of the commands that follow a forward slash (/) are called “nodes”, which has an unfortunate 
naming overlap with the nodes of a mesh (where mesh lines intersect).  These are unrelated, so be aware 
of the double meaning of the term “node”. 

Each node can be considered a bucket of functions available in FLAG.  The input manual follows this 
node structure, which makes it easy to find the location of a particular FLAG function in the input manual. 
When you open the manual, select the collapsible version: 

 

Let’s say you want to take a look at the JWL function. That is found at: 

/global/mesh/mat/gas/model/eos/jwles 

Following the nodal hierarchy above will display something like this: 

 

Clicking on 'JWLES' will open information on the various parameters that go into the JWL. To use the 
JWL eos, variables under the JWL node need to be set. So, the input would look like: 

 

 

https://xweb.lanl.gov/shavano/releases/flag/latest/OPUS/FLAG/flagman/CodeManual.html


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  6 

/mat(HE)/ is a tag on the mat node that is approximately the same as material = HE.   
A different mat would receive a different tag. The Tags chapter (next) discusses tags in more 
depth.  

Typing in all this relational structure can be very repetitive and time consuming. For example, the 
repetition for the full HE JWL block below: 

 

In addition to all the typing, if you want to reuse the code above for a material called mat(Booster), then 
all the mat(HE) nodes have to be changed. That requires 5 separate changes in the above code. In more 
complex sections of code, you might need to make 30-40 nodal changes! So much room for error. 

Thankfully, there is a shortcut that can be used to help vastly reduce the amount of repetition. It's the use 
of '+'. The first time that '+' is invoked after a mk command, it inherits everything in the mk command. 

This: 

 

 
 
 
 
 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  7 

becomes much shorter using the + shortcut: 

 

The '+' became shorthand for mk /global/mesh/mat(HE)/gas. It stays that same shorthand until it sees a 
new mk command that does not contain +. At that point, it resets. The full shortened version of the JWL 
block of code would look like: 

 

This shortcut makes it easy to reuse blocks of code. If we wanted to reuse the JWL section above for a 
booster, we would need to change only the single /mat(HE)/ to mat(Booster). The rest of that block 
would then inherit mat(Booster). 

As you go about creating your own FLAG input, you can choose either approach, and you will see both 
notations mixed throughout local user models. This guide, going forward, will use the + notation as much 
as possible.  



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  8 

4. Tags 

If you don’t know how tags work, they can be really confusing. This section is strongly suggested 
reading. 

In FLAG, it is common for some nodes to have multiple instances invoked. Examples: 
boundaries : kbdy 
regions : kregion 
material : mat 
mesh relaxers : volrelax 

When you have multiple instances of a particular node, you have to call it something else. One obvious 
example is mat. If you have both an HE material and a booster material, you need to call them something 
different. So, we would have both: 

.../mat(HE)/.... 

.../mat(Booster)/.... 

That's pretty straightforward. This means mat is a bucket of material names.  In this bucket, there is an 
HE mat, a Booster mat, etc. Each one of the nodes listed above are separate name bucketspaces and are 
independent of each other. This can be confusing. It is quite common to see the following node names in 
an input deck: 

/global/mesh/mat(HE)/....         Material block instance named HE 
/global/mesh/kregion(HE)/....   Region block instance named HE 
/global/mesh/kbdy(HE)/....       Boundary block instance named HE 

Because they're different name containers, you can reuse the 'HE' tag multiple times. So, if you see a 
block of code like: 

bdy = "HE” 
material  = “HE” 

That first is referring to the HE boundary instance and is not calling either the material block instance or 
the region block instance. The second is calling a HE material instance and not the boundary instance. If 
you avoid using the same name for different nodes, it will minimize confusion. One suggestion for 
naming the above instances: 

/global/mesh/mat(mat_HE)/....         
/global/mesh/kregion(reg_HE)/....   
/global/mesh/kbdy(bdy_HE)/....    

Then the naming degeneracy is avoided when calling the boundary because  
bdy = “bdy_HE”  

looks completely different than a material call 
material = “mat_HE”    



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  9 

5. A Simple Langrangian 2D Input Deck - PBX 9501 HE Cylinder 

This section will detail and explain a full input deck (file linked at the end of this chapter). The previous 
chapters will make this fairly easy to understand. However, there are still a couple of things that we 
haven't discussed yet:   

● function definitions 
● defining problem boundaries 
● defining and forming regions 

The input is based off an experimental configuration. The geometry is simplified a little bit to make the 
setup easier; it should look like figure 1. 

 
figure 1.  

HE: The high explosive is PBX 9501 and has a radius of 1.2 cm.   
Since we will be running in 2D cylindrical, the left edge of the HE will be an axis of symmetry.   

Copper: The HE is surrounded by a 0.3 cm thick copper jacket.   
PDV probes: Four PDV probes are included.   

They are normal to the copper surface and are located at 7.875 in,  8.0 in, 8.938 in, and 9.0 in.  
Note those are in inches, not cm. The experimentalist used a standard ruler to measure them and 
sent me units in inches. I will use a math call to convert them to cm in the input deck. I do this 
because when we're trying to determine why the data and model do not match, the 
experimentalist will always ask if I put the probes in the right spot. I can quickly glance at the 
code and determine if they are in the correct position (in inches).  

 

 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  10 

A small portion of the mesh we will be creating can be seen in figure 2. 

 
figure 2.  

The cylinder extends off both the top and bottom of the image above. I had to zoom in on a section so the 
mesh was clearly visible. Note that the mesh covers only the HE and the copper cylinder. There is NO 
mesh outside of the copper! In an Eulerian code, mesh is needed outside the copper so that the copper can 
flow through the mesh. In a Lagrangian model like this one, the mesh moves with the material. With the 
mesh moving along with the copper, there is no need to add additional zones. However, when meshes are 
badly behaved at the outer boundary, we sometimes need to add additional zones outside the materials to 
help fix poor mesh behavior (detailed later in this chapter). 

The FLAG Database Hierarchy will provide additional useful information for this section.  

Problem Name and Stop Time 

So, in the first few lines of input, we see: 

 

title is a prefix that code output is named. 
In the case of this model, there will be a Lagrangian_Cylex_input_echo file (an echo of the 
input file) and a Lagrangian_Cylex.visar file that contains the PDV output. 

tstop is the stop time of the model. 
dtinitial is the initial timestep. 

https://xweb.lanl.gov/shavano/releases/flag/latest/OPUS/FLAG/flagman/auto/_schemacss.html


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  11 

Meshing Options and Problem Geometry 

The next portion of the code is associated with the symmetry and zoning the problem.  

 

axis2 is the command for 2D cylindrical symmetry. 
Under the /geometry/ node there are other possible axes of symmetry.   

pszoner is used to generate the mesh. 
Refer to the database hierarchy to investigate other mesh types (this guide uses rectangular mesh 
as a default, but there are many other mesh types).   

use_interv 
This means FLAG will automatically decompose the problem and try to evenly spread the zones 
across the requested processors - so you don’t need to make sure that the number of r zones and 
the number of z zones are evenly divisible by the number of processors. 

ranges and izones specify the r- and z- lengths and the number of zones in them. 

Define Functions 

The next section of the code contains func commands. These are functions that evaluate true/false. If 
they're less than some value, they are false, if they're greater, they are true. These are odd to work with, in 
fact the manual entry states "By themselves, these are useless". The func commands in conjunction with 
other commands are used to create boundaries, regions of materials, etc. FLAG does not have simple 
graphics primitives. Things like 'box' and 'cylinder'  that fill zones with a particular shape don't exist in a 
simple form. We will see how to use the func commands in later chapters to do things like fill in the 
copper walls of the cylinder. The block of code that defines the functions is: 

 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  12 

f_raxis is just a label for the function. 
The 'f_' part of the name is used to delineate this name as a function. This function will be used 
later to define the axis of symmetry. What f_raxis is currently doing is defining a plane in which 
an r-value less than 0 is False. Any r-value greater than c=0 is true.   

f_rmax will evaluate to False if  the r-value is less than 1.5 and True if r-value is >= 1.5.   
Visually, the two r value functions look like figure 3. 

f_z_min and f_z_max 
● use a 'planey' to define Z boundary locations 
● use cylindrical symmetry, colloquially called R-Z 
● In FLAG, the r-direction maps to the x-coordinates, and the z-direction maps to the y-coordinates.  

In FLAG cylindrical, the z component is not used; FLAG will crash if a z component is entered.   
● The result is a slightly confusing function definition in cylindrical coordinates; the z boundaries 

defined by planey calls. These func calls tend to be more or less boilerplate, where the c-values 
get changed to match the outer bounds of the problem. So, never changing that block of code will 
simplify functions. Visually, the two Z boundary functions look like figure 4. 

f_HE_Cu is used to define the location between the HE and the inner copper wall. 

 
figure 3.  

 

 
figure 4. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  13 

Define Boundaries 

Now that we know what the functions are doing, we can use them to create the boundaries of the problem. 

 

/kbdy/onefunc function defines a boundary (a set of points) using the 'c =' values of the func calls. 
➢ kbdy(bdy_raxis)/onefunc defines the r axis boundary. 

fname = “f_raxis” command translates as: 
Create a boundary set of points at the c value of the func “f_raxis”. In this case c=0, so create a 
boundary set of points at c=0, then call this boundary “bdy_raxis”. 

The remaining three kbdy commands do similar things except at the different respective func calls.    

At the moment, these newly created boundaries do nothing, they are merely a set of points that happen to 
lie on the edge of the problem. These boundaries do not know how to behave until directed, for example: 
'you can only move in the r-direction' or 'you cannot move anywhere'. This is done through the boundary 
condition function /hydro/lhydro/kbc/kfix. A variable called nfix under the kfix node actually tells the 
boundary how the points can move.   

figure 5 shows what the different nfix conditions look like for a set of points. nfix = rdir zdir where 0 
allows motion in a direction and 1 fixes/restricts the ability to move in a particular direction.  

 
figure 5.  



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  14 

Note: the boundary conditions can have a tstart and tstop associated with them. That means at a given 
model time, one type of boundary condition can be stopped and another invoked, which can be useful for 
controlling bad mesh behavior. 

Looking at the block of code containing the mesh boundary conditions, we see: 

 
* click here for info on ‘+’ 

lhydro is used to run the Lagrangian hydro; it's in every input deck. Even when running FLAG in 
‘Eulerian’ mode, lhydro moves the mesh before it is remapped back to its original position. 
alias - under hydro there are 3 aliases, which are material conditions. Save for export to Ensight (dumps). 

The name of the variable in the code is zp.  It is easier to understand variables in Ensight when 
they are aliased. In the example above, the variable zp is aliased to the name “pressure”, which 
will cause the variable to be called “pressure” instead of “zp” in Ensight. 

mk +kbc are the boundary conditions to invoke for the edges of the mesh.   
➢ raxis: Allow the nodes along the r-axis to be fixed in r but move in z, which is the desired 

behavior for the axis of symmetry. This will prevent the r axis from pulling off 0 and moving to 
a positive r, or worse, becoming a negative r.   

➢ zmin: The nodes along the z min boundary are fixed in z but can move in r. Normally, we 
expect the HE gases to expand out of the copper cylinder, and this rapid mesh expansion will 
quickly start to tangle. To control the expansion, add a condition that does not allow the gases 
to expand in the -z direction. This will make the model run without issues, but the first inch or 
so of cylinder data will probably not be a good comparison to experimental data. Just make sure 
PDVs are located away from the zmin boundary.   

➢ zmax is similarly fixed so that the gases cannot expand out of the top of the cylinder.   

Another choice is whether to trade off model fidelity for mesh robustness. The final two commands just 
after the boundary conditions are boilerplate. They are commonly used, but not commonly understood. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  15 

 

mxtip is a command which determines how mixed cells are compressed. 
The mxtip option means that lower density materials in a mixed zone undergo larger 
compressions compared to higher density components.   

mqtts is a mesh stiffener command to help with thin zones.   
Sometimes zones will ‘chevron' or 'bowtie'. In this case, the corner (or opposite corners) can 
invert, which can cause major problems. Imagine a zone corner is your knee. Chevroning is the 
equivalent of your knee bending backward. Not good. 

Defining Regions 

The next block of code will show how to create regions. Namely, they're going to be the geometric 
regions to assign material parameters to. Note that func is used again, but this time in conjunction with 
the region creation function kregion. 

 

/kregion/universe creates a region that encompasses the entire problem. Create this first. 
The universe region (region = “universe”) can be called in order to do something to the whole 
mesh, such as stiffen it.   

f_HE_Cu uses a function to create a region.   
Here, the func is placed at the boundary of the HE/Copper. Recall that the function evaluates to 
True from >= 1.2 cm, and that copper occupies the entire mesh beyond 1.2cm. So, the copper 
region is created with this one call.   

reg_He creates an HE region.   
This region requires a function that evaluates to true from r= 0 to r= 1.2 cm. The func commands 
don't have that behavior. They're true when greater than a c value, but never become false again.  
A function called boolregion can resolve this issue. This function can do things like union 
operations, intersection operations, and complement operations. A complement of the f_HE_Cu 
function has the desired behavior. So, the final command above uses the complement operator to 
create our reg_He region. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  16 

Copper Material Definition 

The next step is to define the materials. There are two: copper and explosive. Copper will be defined as a 
/mat/solid. The strength and damage functions all lie under the solid node, so anything with strength 
needs to be a solid. The HE will be defined as a /mat/gas. All the reactive burn and program burn 
functionality are under the gas node.   

The material definition for Copper using Sesame 3336 and a PTW damage model looks like: 

 

The material definition text is mostly self explanatory: 
/q/barton command is used to set the artificial viscosity (AV) to a metal specific version. 

FLAG can define the artificial viscosity on each material. Often, a different artificial viscosity is 
used for metals compared to HE. 

/element command sets the elements to a finite volume polyhedral. 
fvpoly or hepoly are for materials. If you're not program burning something, it will be fvpoly. 
/initialize/stre to initialize the material. 

Initializes as a function of stress, temperature, density, energy and the deviatoric stress tensor. 
Provide two of the four conditions and FLAG will solve for the other two. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  17 

PBX 9501 Material Definition 

The material block for PBX 9501 (using Lund program burn) looks like: 

 

/mat/gas is the explosive defined as a mat/gas. 
hepoly is the elements defined as hepoly. 

The only materials that are ever hepoly are program burns. 
If you're using Lund or DSD, the HE will be a hepoly, everything else will be fvpoly. 

barton is where the gas-specific artificial viscosity is used. 
ptre is used to initialize. 

Since gas materials do not have deviatoric stress tensors, we cannot use the stre initialization 
found in solid. So, gases use ptre initialization, which is roughly equivalent.  

Lund Program Burn 

The next portion of the code defines the lund program burn input. It's a simple burn model (burnform = 
'prog'), and is analogous to the $Dets section. 

 

dxt is pretty straightforward: start the initiation at X = 0.0 and Y = 0.0 at time t= 0.0.   
Keep in mind that r-z geometry in FLAG is represented by x-y and not x-z.  Do not include a 
coordinate for the z light point, it will cause FLAG to crash - unless you are running a full 3D 
model. The database hierarchy has more hedet information, such as other light options like line 
light, etc. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  18 

PDV Definitions 

FLAG defines the PDV by origin point and a direction that is a unit vector composed of the x-component 
and the y-component. Here, these PDVs point normal to the copper surface and are located at 7.875", 8", 
8.938" and 9". I use FLAG math to convert from inches to centimeters. Note that the PDV are located 
outside the problem at r = 14.3 cm and they all point inward along the -r direction. A couple of things 
need to be specified for PDV:  

 

bdy = "bdy_rmax" means we're going to monitor the rmax boundary. 
We need to specify the boundary that the PDV will be intersecting. 

matlist = "mat_Cu" specifies the material we want to monitor. 
kkvll = 4 means that we are using 4 PDV probes. 
& is used at the end of the pdv coordinates to continue the input. 

Finally, there are two commands that deal with PDV buffering and writing: 
doc stands for “Do On Cycle” and will buffer the PDV every 10 cycles. 
dot stands for “Do On Time” and will write the pdv dump file every 1.0µs.   

Note that these doc and dot commands do not need to be located with the PDV. There is a time 
controller section of the code that controls time for other parts of the problem; co-locating all the 
time controllers there would be another way of organizing the code. 

Ensight Output 

This block of code controls the output dumps for ensight. 

 

filepath is the location of the dumps. FLAG will create the directory if it does not exist.  
defsets defines a set of common variables that will be saved. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  19 

“mats” means that every real material in the problem will dump: 
hr (density ), he (specific internal energy), ht (temperature ), hp (pressure ), and hhv (volume). 

nvars specifies we are saving 3 aliased variables: "pressure", "density" and "velocity". 
Those 3 variables are the ones we aliased under the lhydro node. Note that the "pressure" and 
"density" variables are semi-redundant with the set specified by defsets = "mats". 

Time Controllers 

This section of input controls two additional time controllers for DTC and ENSIGHT 

 

DTC is used to report the cycle information. 
doc (Do On Cycle) is used to dump the cycle information that every 10 cycles. 
dot (Do On Time) is used to dump Ensight dumps every 0.5 µs. 

Problem Execution 

 

The last two commands tell FLAG to run the input and to end the execution when a stop condition has 
been met. Pretty much every input deck ends with these two commands, consider it boilerplate. There are 
some advanced run control options to interrupt the run and interactively do stuff in the code, but for our 
purposes, they are advanced/developer features. 

To continue with the steps in this guide, you need to download and run the "SimpleCylinder.flg" input 
deck at the end of this chapter. Chapter 6 uses the dump files with Ensight to take a look at the model 
results. figure 6 shows how your Cylex model should look at 13.5 µs when plotting 'pressure' in Ensight. 
Units are in MBar.   

 
figure 6. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  20 

Input File 

Part 5 input file: SimpleCylinder.flg  

 

  

https://xcp-confluence.lanl.gov/display/WCEM/PART+5+%3A+Learning+what%27s+in+a+a+simple+Lagrangian+2D+FLAG+input+deck+--+PBX+9501+HE+cylinder?preview=/429785397/431521834/SimpleCylinder.flg


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  21 

6. Simple HE Cylinder Problem - Using Ensight to Display Results 

In this chapter, we will cover plotting FLAG dumps/results in Ensight. This assumes you are already 
familiar with Ensight. 

Loading the 'Case' 

Use HE cylinder model results or the results linked at the end of this chapter. To view the results of the 
model, first load the 'case' file into Ensight: start up Ensight, go into the '/Ensight' directory, and load the 
case file.  

 

Note that there is only a single case file that contains all of the information. All of those results are found 
in the /0000 folder. Opening up the Ensight directory in FLAG is considerably faster because it isn’t 
listing all the dump files. 

  



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  22 

Parts Loaded by the Case 

Here you see the parts loaded into Ensight.  

 

mat_Cu and mat_HE are our two materials defined in the .flg deck. 
Mpyg are mixed zones. 

Mixed zones typically occur when ALE is invoked to fix a bad mesh. This problem ran fully 
Lagrangian, so there are no mixed zones.   

Int_mat_HE is the material interface for the HE, which is the interface between the HE and Cu.   
Int_mat_Cu is the interface located along the outer Cu boundary. 

Since there is no other material there, this interface doesn't show anything. 

Producing a Pressure Plot 

Click on the materials to plot. Select all, or to see the pressure of a single material, just select one (to see 
copper, select mat_Cu). Proceed to plot the pressure variable. In the case below: right-click on the case, 
select 'Color by', then 'Select Variable', and finally 'pressure'.  

 

Figure 7 shows the resulting plot (when time is 13.51 us, frame 27 in my model). 
Your results should be similar. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  23 

 
figure 7. 

The 4 horizontal lines on the outside of the copper are the PDV probes. We specified that we wanted to 
plot those in the Ensight node of the model.   

Dump Files  

Dump files for the HE cylinder model of Part 5: SimpleCylinder_Ensight.tar.gz  

  

https://xcp-confluence.lanl.gov/display/WCEM/PART+6%3A++Graphing+the+simple+HE+cylinder+problem+with+Ensight?preview=/431521850/431521912/SimpleCylinder_Ensight.tar.gz


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  24 

7. Using Ingen to Create the Cagliostro Mesh 

The input for the previous cylinder model used the built-in meshing functionality of FLAG to generate the 
mesh. Most meshes used with FLAG are not generated this way. Almost all of them are generated using a 
different piece of software called Ingen. This chapter will not be about FLAG – it will cover the process 
of making a relatively simple mesh using Ingen.   

Mesh commands themselves are written in Python, then Ingen takes those commands and creates the 
mesh. Once this mesh is generated, it can be imported into FLAG and used for a model. The next chapter 
will cover how to import the mesh and run it in FLAG. 

To begin, load the modules necessary to access Ingen. Log into a yellow machine (ex: Snow). When 
prompted, enter: 

 

Ingen will load. Start a new Python text file for creating the mesh. The file is linked at the end of this 
chapter, for those who prefer to download it instead of creating it. The mesh we are going to create is 
based on some experiments by Dominic Cagliostro1. 

Cagliostro’s base experiment was a hemisphere of PBX 9501 driving an inner hemispherical metal liner.  
He tested two different metal liners: copper and tantalum. Each experiment had 2 VISAR probes (an early 
predecessor of PDV), shown in figure 8. 

 

figure 8. 

                                                      
1 D. Cagliostro, R. Warnes, N. Johnson, and R. Fujita, “Spall Measurements in Shock-Loaded Hemispherical Shells 
From Free-Surface Velocity Histories,” Shock Waves in Condensed Matter, LA-UR-87-2292, 1987 

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-87-2292
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-87-2292


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  25 

Figure 9 shows what the mesh will look like in the simplified design used in this chapter. The 
detonator/booster and copper flange are left out, and the outer HE contour is spherical. A later section will 
cover these additional geometric complications. 

 
figure 9. 

The geometry simplifications make the meshing file short and simple. The rest of this chapter will discuss 
the various functions needed to generate the mesh. The Ingen Manual details the functions that we are 
using and shows examples of other functions available. An easy way to navigate it is to type in the 
function in the search box in the upper right. For example, if I want to know more about gwiz.arc and to 
find similar geometry commands, I type in “arc” in the search box (if you type “gwiz.arc”, it won't find 
anything). A drop down box of 'arc' functions will appear.  Click on the gwiz.arc and it will take you to 
the right section. 

Back to the details in the Cagliostro_mesh.py file:  

 

import ingen Python import statement needed to access the functionality of ingen. 
from ingen import gwiz, altair, materials Python import statements needed to access modules. 

Specifically, models for geometry building and meshing.   
startModel is a required command, the name will be the mesh filename.   

Next, there are 4 python variables used to set the dimensions of the geometry. The dimensions are the 
experimental dimensions from figure 9 (above). This defines the geometry and makes it easy to change. 

 

https://setup.lanl.gov/docs/ingen/


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  26 

Start the meshing process by making lines, arcs, ellipses, and tabular contours that define all interfaces in 
the problem. The three interfaces in the simplified Cagliostro geometry are all arcs. Since RZ symmetry 
will be used in the FLAG model, we only need to define the arcs from 0 to 90 degrees. The three interface 
contours are created with: 

 

This creates contours at the various radii listed in figure 8, the experimental diagram above. The three 
gwiz.arc commands above generate the three arcs in figure 10 below. 

Alternately, to generate these contours yourself: open Cagliostro_Mesh.py, comment out all lines after the 
cntr section except for the ingen.endModel, and run the script using ingen -g Cagliostro_Mesh.py at the 
prompt. That should generate the graphic in figure 10. 

 
figure 10. 

These contours need to be segmented in order to make the mesh out of the segments.   

 

contour2segments creates segments on each contour by specifying the spacing between segments.   
➢ contours=cntr is used because all current contours lie in the cntr namelist. 
➢ segments=seg specifies that all segments lie in the seg namelist. 

dAngle = res sets the angular spacing. It is the only segmentation option we set.  
This handles spacing between segments and ensures the number of segments on the inner contour 
are the same as the number of segments on the outer contour. The number of zones will be the 
same, but the ones along the outer part of the problem will be fatter. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  27 

Figure 11 shows what the segmented contours will look like: 

 
figure 11. 

To generate these contours yourself: open the Cagliostro_Mesh.py file, comment out everything after the 
last seg command except the ingen.endModel, and run the script using ingen -g Cagliostro_Mesh.py at 
the prompt. This should generate the graphic in figure 11. 

Note: The ‘res’ variable is increased to 2° in order to clearly show the different segments. At 0.5°, they 
overlap. Recommended display options below: 

 

Check the Segment Node Size in the right tool bar to make sure it's large enough. The default creates a 
node size that is smaller than the contour line width and won't show up. The segment node size example 
below is set to 7, and when paired with the settings in the figure above, the segment ends will show. 

 

Finally, add the commands necessary to connect all the segments into a mesh. Ingen uses four segmented 
contours to create a mesh block, so 4 different segments need to be specified to form the four sides of a 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  28 

block. However, specifying the mesh block as a square will constrain the problem to require 2 specified 
segments: 

 

altair.squareDistrib() specifies we want square-ish zones.   
squareRule is a variable that makes the code shorter.   

blk namespace.  There are two. 
Both use block2 commands that take the inner segmented contour and the outer segmented 
contour as the constraints for how the HE will be zoned up. The squareRule provides the 
additional constraints.  

➢ blk.metal_hemisphere creates the block for the metal hemisphere. 
➢ blk.he creates the block for the HE.   

Finally, we need to assign the blocks to a material. The result of the 3 commands looks like the mesh in 
figure 9. 

Two more things to close this out: 

 
seg.inner_metal contains the list of points the PDV will monitor, so it should be tagged. 

➢ (‘pdv’) tags the boundary to be used for PDV. This is used in the FLAG input to specify the 
boundary the PDV is monitoring.   

ingen.endModel closes out the ingen session. If you run ingen on the file before the endModel, ingen 
will produce an error. 

➢ x3d=True tells it to write the mesh. 
➢ npes=144 tells it to use up to 144 processors. Writing these x3d files takes a bit, so specifying 

way more processors that you will ever use is a waste of time. However, FLAG will crash if 
you don’t create enough x3d files. 

Running the python script using: ingen -g Cagliostro_Mesh.py, should create a mesh directory that 
contains mesh files and the PDV boundary points file. It will also return the part masses of the HE and the 
copper. The python script used to generate the mesh is included in the ‘Files’ section below. There is also 
a tar file of the mesh for those which avoids having to open Ingen, which is slow under certain 
circumstances (such as remoting in from home). 

In the next chapter, we will write the FLAG input file to run this mesh.  

Files 

Python script file to generate the mesh: Cagliostro_Mesh.py  
Mesh files in case you don't want to generate them: Cagliostro_Mesh_Files.tar.gz  

https://xcp-confluence.lanl.gov/download/attachments/432996499/Cagliostro_Mesh.py?version=2&modificationDate=1587658962487&api=v2
https://xcp-confluence.lanl.gov/download/attachments/432996499/Cagliostro_Mesh_Files.tar.gz?version=1&modificationDate=1587580378619&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  29 

8. Cagliostro: Simplified Mesh  

Chapter 7 briefly overviews the Cagliostro experiment, described in  LA-UR-87-2292.. 

This 4-part Cagliostro chapter adds to the HE cylinder FLAG input used in Chapter 6 and sets up a basic 
mesh in FLAG, results shown in figure 12. The FLAG input in this first section will be used in the rest of 
the Cagliostro section. To follow the instructions in this chapter, you can modify the cylinder file you 
created in Chapter 6, or you can download the file at the end of this chapter.   

 

figure 12. This is a video, linked here , or you can click on the image 

For Part 1, use the Ingen mesh files you made in Chapter 7, or download the Python file and mesh file 
(originally lined in the files section of Chapter 7).  

The major difference between the input for the Cagliostro experiment and the cylinder input is that we are 
going to import an existing mesh to use instead of creating the mesh in the input. We also need to import 
the PDV boundary we created in Python. 

Importing and Partitioning the Mesh 

We need to pull in the mesh, then partition it. This is done in FLAG by importing the Ingen mesh called 
mesh(donor). Then, a 2nd mesh will be used to take the donor mesh and partition it into equal size 
submeshes, which are sent to the various processors. Keep in mind that when you import an ingen mesh, 
you actually need to create 2 meshes. Both meshes need to have the geometry specified for them. The 
importing and partitioning is shown below: 

https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-87-2292
https://xcp-confluence.lanl.gov/download/attachments/433619140/Cagliostro.flg?version=1&modificationDate=1587678130528&api=v2
https://xcp-confluence.lanl.gov/download/attachments/433619140/Cagliostro_Simple_Movie.gif?version=1&modificationDate=1588013364832&api=v2
https://xcp-confluence.lanl.gov/download/attachments/432996499/Cagliostro_Mesh.py?version=2&modificationDate=1587658962487&api=v2
https://xcp-confluence.lanl.gov/download/attachments/432996499/Cagliostro_Mesh_Files.tar.gz?version=1&modificationDate=1587580378619&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  30 

 

mesh(donor)  
/geometry/axis2 for the donor mesh (cylindrical symmetry). 
importx3d imports the mesh that we created.   

The second set of commands creates a new mesh by partitioning mesh(donor) such that it most efficiently 
uses the available processors. This second unnamed mesh is the one that FLAG will actually use for the 
hydro. 

Importing the PDV Boundary 

The functions used for boundaries and the boundary creation commands are similar to those in the 
cylinder problem. The one notable exception is that we import the PDV boundary. 

 

bdy_PDV imports the PDV boundary created in ingen and assigns it to this boundary. 
importdefn finds the files. 

The hydro boundaries for this problem were simplified from the cylinder. We are once again using 
cylindrical geometry, so we need to set boundary conditions for the r-direction and z-direction. Here, We 
only needed boundary conditions for r=0 and for z=0, so there are just 2. We don’t need boundaries for 
rmax and zmax because we will let them expand as the model evolves. 
Importing Regions Created in Ingen 

 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  31 

importdefn is used to import the copper and HE regions, instead of creating them.  
Recall these were created in Ingen in chapter 7.   

reg_Cu and reg_HE are available for import in the /mesh directory.  
Because these are the same names that we used in the cylinder problem, we can reuse the material 
blocks for both materials without making any changes.   

The PDV block is essentially the same as for the HE cylinder, but we have to change the origin and 
directions to match the PDV directions in the experiment.  

 

bdy_PDV is the imported PDV boundary we are monitoring.  
kkvll is the number of PDV probes we are putting into the model.  In this case -- two PDVs. 
vorigin PDV origin. 

Note that we moved the 2nd PDV origin down in z to match the experiment. Also, note that in 
PDV coordinates, we are actually using the z location for the PDV z coordinate instead of using 
the y-location like we do with boundaries. 

vdir is the normalized unit vectors of the PDV direction.  
For probe 2 (the 50° probe), they are simply the Sin(50) and Cos(50) . 

Finally, the light point needs to modified (not shown here, look at the .flg input file) to light the main 
charge at the top of it. Using 5.07cm puts it just inside the outer HE boundary. 

Files 

FLAG input deck: Cagliostro.flg  
Dominic Cagliostro’s experiment writeup: Cagliostro_Paper_1988_1.pdf 
Digitized PDV data files: cagliostro_data.tar.gz   

https://xcp-confluence.lanl.gov/download/attachments/433619140/Cagliostro.flg?version=1&modificationDate=1587678130528&api=v2
https://xcp-confluence.lanl.gov/download/attachments/433619140/Cagliostro_Paper_1988_1.pdf?version=1&modificationDate=1587659715926&api=v2
https://xcp-confluence.lanl.gov/download/attachments/433619140/cagliostro_data.tar.gz?version=1&modificationDate=1587692843375&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  32 

9. Cagliostro: Complex Mesh Parts and ALE Intro. 

This section focuses on modifying the geometry to better match the original experiment. The unconfined 
booster glued to the top of the spherical charge is an especially difficult meshing issue. When the booster 
goes off, the zones reach pressures on the order of 0.3 Mbar. The air zones just behind the booster are at 
1e-6 Mbar. That pressure differential really wants to squash the air zones. Additionally, the booster is 
expanding sideways at the booster/HE interface. The main HE wants to expand radially outward, which 
adds in all kinds of weird shear in the zones adjacent to the booster/HE interface. 

HE free expansion into air is most easily dealt with using a full Euler treatment. However, we will walk 
through running the problem with ALE. ALE settings and setup have to be just right to get it to run to 
completion. See figure 13 for the resulting video. Minor changes to this geometry, say even a FLAG 
version change (I used 3.8.Alpha.19 here), will likely result in a problem that doesn't complete. 

 

figure 13. This is a video, linked here , or click on the image 

Modifications to the Python Mesh Script 

Make some modifications to the Ingen python script in order to add an air region outside of the HE:  
1. 'paint' a booster onto the air region 
2. remove some of the outer diameter of the HE along the edge to better match what was fired in the 

Cagliostro experiment 
3. 'paint' air onto the HE to represent the removed HE (results shown in figure 14) 

https://xcp-confluence.lanl.gov/download/attachments/434569584/Cagliostro_ALE_Movie.gif?version=1&modificationDate=1588002005680&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  33 

 
figure 14.  

Conforming versus Painting Mesh 

To understand how painting works, take a look at the booster in figure 14 (in dark red). The outline of the 
booster region is the green surrounding line (extending into the main HE, which will be discussed more 
later). Paint works by turning any of the underlying mesh inside of the booster region to “booster 
material”. Similarly, looking at the HE cutout on the sides, paint looks at the HE material lying inside the 
cutout region and turns it into air. Note that material boundaries are not perfect. There is some raggedness 
to them as they follow the underlying mesh zones. However, paint can insert complex shapes into 
conformal meshes with relative ease.   

When to paint and when to conformally mesh? Conformal meshing is recommended when it can be done 
quickly, painting is recommended when the effort to conformally mesh a part is great. For example, if the 
parts were U.S. states, I recommend you conformally mesh Colorado because it's a nice 4 sided figure, 
but paint Michigan. Conformal meshing is also recommended when the part is close to a diagnostic of 
interest. In this problem, the inner metal surface is conformally meshed because the PDV is looking at the 
inner metal surface. This avoids paint errors. However, if the item/surface is on the other side of the 
problem from the diagnostics, then painting it is recommended. Painting is fast and something on the 
other side of the problem probably won’t have time to create significant errors. In this problem, the 
booster and the HE cutout are painted because they are on the far side of the problem from our PDV. 

Python Mesh File Modifications 

Modify the simple Cagliostro_Mesh.py created in Chapter 7, or download the final mesh file. 

● First, in the materials section, add an additional material for the booster called mat.booster.   

 

https://xcp-confluence.lanl.gov/download/attachments/434569584/Cagliostro_ALE_Mesh.tar.gz?version=1&modificationDate=1588009913844&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  34 

● Then, add in some additional contours:  
cntr.cut is going to represent the cutout location on the HE.   

This line is for visual purposes to see where I’m going to paint in air on the HE. A little 
later, I’m going to define a box that I will actually use for paint purposes. That box is 3D 
and doesn’t show up in our model. So I stuck a line in there so I could see the paint 
boundary. 

cntr.air  Offset the outer HE contour in R by 4.0 cm. Use this new contour as an air boundary.    
cntr.booster  Load an rz table that represents the outline for the booster. 

Figure 15 shows what the 3 additional contours look like before mesh is added to the air region. Note the 
booster contour. The HE boundary is extended into the HE, which will ensure the contour intersects the 
HE outer boundary across the entire radius, even though the exact HE boundary data aren’t available. It’s 
fine that the booster contour extends into the HE because that region will not be painted on. 

 
figure 15.  Note the booster contour extending into the HE 

Figure 16 shows the air mesh and region added in: 

 
figure 16. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  35 

Now that we have enough mesh, we can start painting onto the mesh. This is done with the following 
lines of code : 

 

contours2Regions command on our cntr namelist converts contours to regions. 
blk.air.paintFeature  is a function that paints on the air block (blk.air). 

Even though the booster contour extends into the HE, none of it gets painted because that's a 
different material block. To paint on the HE, use a blk.he.paintFeature call.   

osoRegion uses Oso functionality to paint onto the mesh. OSO needs regions in order to paint.  
baseMaterial is the material we want to paint on (examples: air or HE). 
featureMaterial is the material we want the painted regions to be.   

In this case, we want painted regions to be booster.   
gwiz.solid.box region command creates a 3D box that produces an HE cutout on the edge. 

Everything inside the box is painted as air. However, ingen does not display 3D objects on a 2D 
mesh such as this one, so the box is not shown. That’s why I created cntr.cut -- so I could see 
where the edge of the box was! 

The final thing to do is tag some of the interface boundaries. These will be used for some ALE boundaries 
in the FLAG input later. Those final commands look like: 

 

Run the python script to generate the mesh, or download this meshfile and booster.rz file. The booster.rz 
file needs to be in the same directory as the python mesh creation file. 

FLAG Input Modifications 

Figure 17 shows a simulation with no ALE. If the input is modified to use the new materials, with no 
mesh controllers, the mesh will tangle within the first 0.9 µs because the booster compresses the air 
region just on the back side of it.  

https://xcp-confluence.lanl.gov/download/attachments/434569584/Cagliostro_Mesh_ALE.py?version=1&modificationDate=1588005233538&api=v2
https://xcp-confluence.lanl.gov/download/attachments/434569584/booster.rz?version=1&modificationDate=1588005270687&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  36 

 
figure 17. 

Adding the air made it easy to paint on a booster, but it squashed the mesh zones. In order to deal with 
this, we will have to add in mesh controllers, colloquially known as ALE (Arbitrary Lagrange Eulerian).   

A note about ALE functionality: all the points along the ALE boundary need to be told how to behave. If 
you have points along an ALE boundary that are not subject to a boundary condition, then FLAG will 
crash. The ALE region used here is bound by the following 4 boundaries: metal_HE boundary, rmin 
boundary, zmin boundary, air boundary.  

We tagged the metal_HE boundary and the air boundary in the Ingen file. We will define the rmin and 
zmin boundaries in the .flg input in a bit. 

Next, modify the FLAG input from the Cagliostro Part 1. I will only comment on those modifications. 

FLAG Boundary Imports 

bdy_rmin and bdy_zmin are already defined; metal_HE boundary and the air boundary are still needed.  
Use importdefn to import the metal_HE boundary and the air boundary tagged in the meshing script to 
the FLAG input script. This is the same method used with the PDV boundary in the previous section on 
simplified mesh PDV boundary. 

FLAG Boundary Condition Assignment 

Next, assign some boundary conditions to the outer air boundary. Below is a boundary condition that does 
not allow the boundary to move: 

 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  37 

Fixing the boundary causes the sweeping shock/pressure wave from the detonation to create a large 
pressure reflection and the mesh to pile up on the boundary. The weird vortices at the edge of the mesh 
ultimately tangle. However, the boundary does not have to be fixed. Changing it to nfix = 0 0, allows the 
boundary to expand outward. I found that it was easier to fix the boundary and deal with the pressure and 
mesh piling up on the boundary. 

Import the New Regions 

The newly created booster region and air region need to be pulled into the input: 

 

Our First ALE Block 

ALE is a powerful meshing tool, but takes trial and error to figure out. This chapter covers the basics of 
properly implemented ALE strategy.   

First, put in the capability to advect material across zones: 

 

volf is an interface tracking and reconstruction command. 
matlistpty is a statement which controls material priority. 

We specify the material by name, the order of the names is the priority. 
advection functionality must be invoked.   

The advection variables listed directly below the advection command are the ones suggested by 
FLAG developers.   

 

 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  38 

Next, add in a relaxer.   

 

cn stands for a mesh relaxer type called condnum.  
There are other options, like adapt.  There is an adapt code block that is commented out in the .flg 
file included in this chapter. Swap the cn section for the adapt section to see the difference. 

regions = “reg_HE” “reg_booster” “reg_air”  tell the relaxer what regions will be relaxed. 
The main HE charge, booster, and air region are specified - the relaxer will be applied to them.   

relaxtime and relaxstop tell when the controller turns on and when to stop it. 
I want the controller to be active throughout this entire problem.   

mk +kbc are four different boundary fix conditions for ALE. Very similar to hydro boundary conditions.   
'+' kbc stands for /global/mesh/optimize/ale/volrelax/cn/kbc/kfix 
This ‘+’ does not stand for the hydro boundary conditions found under the node 
/global/mesh/kbc/kfix. We need TWO boundary conditions in an ALE implementation -- hydro 
boundary conditions and ALE boundary conditions. The ALE boundary conditions are different 
and independent of the hydro boundary conditions. The ALE boundary conditions are needed 
because the boundary points are being moved around due to geometric issues and not due to 
hydrodynamic features like pressure. We need a different set of boundary controllers to tell ALE 
how those points should move. The rmin boundary kfix condition fixes points in r but allows 
motion in z. Thus along the rmin axis, ALE can move points in the z-direction but cannot move 
points in the r-direction. As mentioned above, hydro and ALE kfix conditions are independent of 
each other. It's possible to allow points to move under hydro and fix them under ALE, or vice 
versa. Note: for each type of ALE implemented, each controller will need to have boundary 
conditions for THAT relaxer. For  example, if 5 different ALE relaxers were used, boundary 
conditions will be needed under each one to tell the relaxers how to handle the boundary.   

Finally, we are going to add in a geometry controller that will limit the portion of the mesh that undergoes 
ALE relaxation: 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  39 

 

enable_ang=1 turns the angle check in the geom comptroller. 
This will ALE any zone whose angle between two vertices is less than 45°.   

enable_elength=1 enables the edge length check. 
This will ALE any zone whose edge length drops below 10e-3.   

enable_eratio =1 enables edge length ratio check.  
This will ALE any zone whose ratio of edge lengths is greater than 4.   

izway=5 helps when a zone undergoes ALE by using zones up to izaway to fix the distorted zone.   

Run the FLAG input.  This is a tough problem to run ALE. Things to try if it doesn't complete: 
1. Modify the geom options. 
2. Try a different relaxer type. 
3. Increase or decrease the air boundary offset that's found in the cntr.air part of the mesh script. 

 
Comparison of Two Models 

This section compares this model with the simplified mesh from Cagliostro Part 1. 

In Cagliostro Part 1, the problem was simplified by leaving the booster out and not truncating the edges of 
the HE. Adding in those parts created quite a bit more work.  Is adding those experimental details worth 
the effort?   

A comparison of the PDV probes from the simplified geometry (Cagliostro Part 1) and from this one 
(Cagliostro Part 2) is shown in figure 18.  

 
figure 18. 

https://xcp-confluence.lanl.gov/download/attachments/433619140/Cagliostro.flg?version=1&modificationDate=1587678130528&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  40 

The first probe to jump off is the 0° probe directly under the booster.  The second probe to jump off is the 
one at 50°. The 0° probe clearly shows significantly different velocity (about 200 m/s) when the booster is 
included. The 50° probe shows minor differences between the two treatments. Therefore, it is worth the 
trouble of including the booster if an error on the order of ~200m/s is not tolerable. 

To parse the PDV data (still called *.visar by FLAG), use the following simple Python script to spit out 
individual probe files in a comma-delimited format. To use it, load python 3.6 and execute at the prompt:  
python FLAG_PDV_parse.pv Cagliostro.visar 

Files 

Python script used to generate the mesh: Cagliostro_Mesh_ALE.py 
Booster r-z file:  booster.rz 
Mesh: Cagliostro_ALE_Mesh.tar.gz 
FLAG input script: Cagliostro_ALE.flg 
FLAG PDV parser:  FLAG_PDV_parse.py 
  

https://xcp-confluence.lanl.gov/download/attachments/434569584/Cagliostro_Mesh_ALE.py?version=1&modificationDate=1588005233538&api=v2
https://xcp-confluence.lanl.gov/download/attachments/434569584/booster.rz?version=1&modificationDate=1588005270687&api=v2
https://xcp-confluence.lanl.gov/download/attachments/434569584/Cagliostro_ALE_Mesh.tar.gz?version=1&modificationDate=1588009913844&api=v2
https://xcp-confluence.lanl.gov/download/attachments/434569584/Cagliostro_ALE.flg?version=1&modificationDate=1588012679543&api=v2
https://xcp-confluence.lanl.gov/download/attachments/434569584/FLAG_PDV_parse.py?version=1&modificationDate=1588012722295&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  41 

10. Cagliostro: Running Eulerian in FLAG 

This section walks through some modifications to the previous FLAG input file and some minor changes 
to the meshing script, with the goal of running the Cagliostro problem using an Eulerian approach. Figure 
19 links to a movie that shows our previous Lagrangian/ALE model on the left side and the full Eulerian 
model on the right side. 

figure 19. This is a video, linked here , or click on the image to open. Langrangian on left, Eulerian on right. 

Note how the mesh moves with the hydrodynamics in the Langrangian model, but is fixed with materials 
flowing through the mesh in the Eulerian model. When working with freely expanding HE products, 
Eulerian is a simpler approach. 

Modifications to the Meshing Python Script 

To run an Eulerian model, the recommended procedure is to build geometry in Osito, then use OSO files 
to load the geometry into an Eulerian model. Osito is much easier to use than Ingen. Alternatively, region 
files from Ingen input can be exported as OSO files. For the example in this chapter, a good Ingen 
meshing script is available. Adding a few lines to that input will produce the needed OSO regions.  

https://xcp-confluence.lanl.gov/download/attachments/438075430/Cagliostro_Euler_ALE_Comparison.gif?version=2&modificationDate=1588098608689&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  42 

 

altair.blocks2Regions turn material blocks into regions that live in the reg namespace. 
gwiz.solid.makeRegions creates a new region namespace called reg2. 

Our OSO file needs metal, HE, and booster regions. Currently, reg contains those regions, and a 
number of other regions which will not be used. So I will copy only the regions I want to use over 
to reg2.     

gwiz.writeOSO saves the OSO file. 
endModel command, set x3d = False so mesh files aren’t written, as they won’t be used. 

Execute the script (included at the end of this section).  This will produce a Cagliostro.oso file that 
contains your geometry. 

Modifications to FLAG Input 

First, use pszoner to make a rectilinear mesh:  

 

To reuse the previous Cagliostro ALE input file:   
● Remove the PDV, air, and Cu_HE boundary import statements. Importing boundaries won’t be 

necessary, and trying to import them will cause FLAG to crash.   
● Add in appropriate functions and boundary conditions for rmax and zmax.   
● Add in hydro boundary conditions to keep the outer mesh boundary fixed. 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  43 

 

● Add the recommended values, inserted above, to lhydro and to mxtip. 
● Note that cflu and cflv are very large compared to Eulerian settings on the LAP page. 

In the next section of code, regions are imported from the OSO file: 

 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  44 

● The final region the air will occupy is created by filling in all the zones that are not currently 
filled with a material. This is similar to the 'void' region in some codes. The oso_comp = 
“implicit” creates a region of all the unfilled zones called reg_air 

 

● Add visar_pdv_ale, which is a PDV treatment that can deal with advection.   
It is very similar to visar_pdv, except it doesn't need a boundary specified. Specify the material 
and it will follow the surface of the material. This is the last change to make. 

The PDV results from the Eulerian model and from the more complex Lagrange/ALE model are plotted 
in figure 20. The Eulerian PDV has a high frequency oscillation, likely due to the PDV probe sampling 
different zones as a function of time. The Eulerian also has a longer rise time. Otherwise, the two models 
give similar PDV results. 

 
figure 20. 

Files  

FLAG input : Cagliostro_Euler.flg 
Python script used to generate OSO file: Cagliostro_Mesh_Euler.py 
OSO geometry file: Cagliostro.oso  

https://xcp-confluence.lanl.gov/download/attachments/438075430/Cagliostro_Euler.flg?version=1&modificationDate=1588101119082&api=v2
https://xcp-confluence.lanl.gov/download/attachments/438075430/Cagliostro_Euler.flg?version=1&modificationDate=1588101119082&api=v2
https://xcp-confluence.lanl.gov/download/attachments/438075430/Cagliostro_Mesh_Euler.py?version=1&modificationDate=1588101119453&api=v2
https://xcp-confluence.lanl.gov/download/attachments/438075430/Cagliostro.oso?version=1&modificationDate=1588101119734&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  45 

11. Cagliostro: AMR Implementation 
In figure 21, compare the original Eulerian version using a uniform mesh on the left with the AMR 
implementation on the right.   

 
figure 21. This is a video, linked here , or click on the image above to open the movie.  

Eulerian with uniform mesh on the left, AMR on the right. 

Figure 22 zooms in closer to view the mesh evolution as the detonation breaks out into the main charge. 
Notice the AMR model has a coarser grid compared to the non AMR. However, the AMR model can 
resolve down to a factor of 4X higher resolution in regions that need higher resolution. Yet, both of these 
models took about the same amount of time to run.  

 
figure 22.  Fixed resolution mesh on the left.  AMR mesh on the right. 

https://xcp-confluence.lanl.gov/download/attachments/439812339/Cagliostro_Euler_AMR_Movie.gif?version=3&modificationDate=1588264796599&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  46 

The reason for AMR: it allows for high resolution where it's needed and allows for extremely coarse 
resolution where it's not needed. Probably the most obvious example of this is the HE. Within ~+/- 1 mm 
of the detonation front, resolutions down to 10 µm are needed. Once beyond the detonation region, 1mm 
zones provide a good representation of the long-term HE energy delivery. For this problem, if we assume 
the HE detonates at 8mm/us, the HE detonation covers a 1 mm distance in 125 ns. We need high 
resolution in that 1mm region for 125 ns. After that, the remaining 19.875us of this problem, that 1mm 
can be run with coarse zones (e.g 1mm zone sizes). AMR allows the flexibility to use high resolution only 
when and where it is needed and use coarse resolution otherwise. 

Modifying the FLAG Input to Add in AMR 

This section will detail modification of the input from Cagliostro Part 3 and will reuse the Cagliostro.oso 
geometry file. Or, download the full FLAG input. 

● First, define a variable to allow for easy changes to the number of refinement levels. Otherwise, 
changes to the initial meshing are almost identical to Part 3, except that the mesh(donor) needs to 
be changed (see below).  

 

● Next, add the acceptor mesh, which will determine the amount of refinement to put on the mesh 
at the start of the problem.   

● Add a function to deal with the split ends that AMR adds to the problem. 

https://xcp-confluence.lanl.gov/display/WCEM/PART+10%3A+Cagliostro+part+3%3A++Running+Eulerian+in+FLAG?preview=/438075430/439124191/Cagliostro.oso
https://xcp-confluence.lanl.gov/download/attachments/439812339/Cagliostro_Euler_AMR.flg?version=1&modificationDate=1588265857756&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  47 

 

● Make changes to a few default settings under lhydro and advection. The rest of the input is mostly 
unchanged. 

● The last remaining significant change is putting in the AMR block. Note that the AMR block 
must come after the material definitions. Currently, material assignments must be before AMR 
so that matregion knows what the materials are. 

The AMR block looks like: 



Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  48 

 

There are three mesh controllers, the second two controllers refine based on density gradients and 
pressure gradients.   

matregion mesh controller is based on refining the materials at the material boundaries.   

Files 

FLAG input: Cagliostro_Euler_AMR.flg 
Geometry file:  Cagliostro.oso  

https://xcp-confluence.lanl.gov/download/attachments/439812339/Cagliostro_Euler_AMR.flg?version=1&modificationDate=1588265857756&api=v2
https://xcp-confluence.lanl.gov/download/attachments/438075430/Cagliostro.oso?version=1&modificationDate=1588101119734&api=v2


Introduction to FLAG     

Last updated 14 Sep 2020                                                                                                       page  49 

Acknowledgements 

This practical introduction to FLAG is based on a series of online tutorials created by the author while 
telecommuting. We’d like to acknowledge Dominic Cagliostro, Scott Jackson and Eric Anderson for 
sharing experimental data. Devin Shunk, Erik Shores and other confluence commenters for encouraging 
this work and improving the online tutorial. Jim Hill for the FLAG manual. Nick Denissen for his 
tutorials and for answering numerous questions from the authors.   

https://xcp-confluence.lanl.gov/display/WCEM/Introduction+to+Codes

	Introduction to FLAG
	Confluence
	High Performance Computing
	You will need to log into a High Performance Computing (HPC) resource to run FLAG files.
	Units
	Meshing

	1. Setting up the Environment and Running FLAG
	Running Interactively
	Running as a Batch Script
	Input File

	2. Active Code Blocks, Comments, Variables, Math
	Comments and Active Code Blocks
	Variables
	Math

	3. Relational Database Input Structure; the “+” Shortcut
	4. Tags
	5. A Simple Langrangian 2D Input Deck - PBX 9501 HE Cylinder
	Problem Name and Stop Time
	Meshing Options and Problem Geometry
	Define Functions
	Define Boundaries
	Defining Regions
	Copper Material Definition
	PBX 9501 Material Definition
	Lund Program Burn
	PDV Definitions
	Ensight Output
	Time Controllers
	Problem Execution
	Input File

	6. Simple HE Cylinder Problem - Using Ensight to Display Results
	Loading the 'Case'
	Parts Loaded by the Case
	Producing a Pressure Plot
	Dump Files

	7. Using Ingen to Create the Cagliostro Mesh
	Files

	8. Cagliostro: Simplified Mesh
	Importing and Partitioning the Mesh
	Importing the PDV Boundary
	Importing Regions Created in Ingen
	Files

	9. Cagliostro: Complex Mesh Parts and ALE Intro.
	Modifications to the Python Mesh Script
	Conforming versus Painting Mesh
	Python Mesh File Modifications
	FLAG Input Modifications
	FLAG Boundary Imports
	FLAG Boundary Condition Assignment
	Import the New Regions
	Our First ALE Block
	Comparison of Two Models
	Files

	10. Cagliostro: Running Eulerian in FLAG
	Modifications to the Meshing Python Script
	Modifications to FLAG Input
	Files

	11. Cagliostro: AMR Implementation
	Modifying the FLAG Input to Add in AMR
	Files

	Acknowledgements

